Космонавт не нужен. Будущее пилотируемых полётов. Пилотируемая космонавтика в XXI веке Важные космические программы и полёты КА разных стран

| | | | |
космонавтика история, космонавтика
Космона́втика (от греч. κόσμος - Вселенная и ναυτική - искусство мореплавания, кораблевождение) - теория и практика навигации за пределами атмосферы Земли для исследования космического пространства при помощи автоматических и пилотируемых космических аппаратов. Другими словами, это наука и технология космических полётов.

В русском языке этот термин был употреблён одним из пионеров советской ракетной техники Г. Э. Лангемаком, когда он переводил на русский язык монографию А. А. Штернфельда «Введение в космонавтику» («Initiation à la Cosmonautique»).

Основу ракетостроения заложили в своих трудах в начале XX века Константин Циолковский, Герман Оберт, Роберт Годдард и Рейнхольд Тилинг. Важным шагом стал запуск с космодрома Байконур первого искусственного спутника Земли в 1957 году СССР - Спутника-1.

Грандиозным свершением и отправной точкой развития пилотируемой космонавтики стал полёт советского космонавта Юрия Гагарина 12 апреля 1961 года. Другое выдающееся событие в области космонавтики - высадка человека на Луну состоялось 21 июля 1969 года. Американский астронавт Нил Армстронг сделал первый шаг по поверхности естественного спутника Земли со словами:«Это маленький шаг для одного человека, но огромный скачок для всего человечества».

  • 1 Этимология
  • 2 История
    • 2.1 Ранняя история (до 1945 года)
    • 2.2 Ранняя советская ракетно-космическая программа
    • 2.3 Ранняя американская ракетно-космическая программа
    • 2.4 Важнейшие этапы освоения космоса с 1957 года
    • 2.5 Современность
  • 3 Коммерческое освоение космоса
  • 4 Военно-космическая деятельность
  • 5 Космические агентства
  • 6 Важные космические программы и полёты КА разных стран
    • 6.1 Искусственные спутники Земли (ИСЗ)
      • 6.1.1 Космические телескопы
    • 6.2 Автоматические межпланетные станции
      • 6.2.1 Лунные станции
    • 6.3 Пилотируемые полёты
    • 6.4 Орбитальные станции
    • 6.5 Частные космические корабли
  • 7 Ракеты-носители
  • 8 См. также
  • 9 Примечания
  • 10 Литература
  • 11 Ссылки

Этимология

Впервые термин «космонавтика» появился в названии научного труда Ари Абрамовича Штернфельда «Введение в космонавтику» (фр. «Initiation à la Cosmonautique»), который был посвящён вопросам межпланетных путешествий. 1933 году работа была представлена польской научной общественности, но не вызвала интереса и была издана лишь в 1937 году в СССР, куда в 1935 переехал автор. Благодаря ему же, в русский язык вошли слова «космонавт» и «космодром». Долгое время эти термины считались экзотическими, и даже Яков Перельман упрекал Штернфельда в том, что тот запутывает вопрос, выдумывая неологизмы вместо устоявшихся названий:«астронавтика», «астронавт», «ракетодром». Основные идеи, изложенные в монографии, Штернфельд доложил в Варшавском университете 6-го декабря 1933 года.

В словарях слово «космонавтика» отмечено с 1958 года. художественной литературе слово «космонавт» впервые появилось в 1950 году в фантастической повести Виктора Сапарина «Новая планета».

В целом, в русском языке -навт, -навтик(а) утратили своё значение (какое эти слова имели в греческом языке) и превратились в подобие служебных частей слова, вызывающих представление о «плавании» - как то «стратонавт», «акванавт» и т. п.

История

Ранняя история (до 1945 года)

Макет первого искусственного спутника Земли.

Идея космических путешествий возникла после появления гелиоцентрической системы мира, когда стало ясно, что планеты - это объекты, подобные Земле, и таким образом, человек в принципе мог бы посетить их. Первым опубликованным описанием пребывания человека на Луне стала фантастическая повесть Кеплера «Somnium» (написана 1609, опубликована 1634). Фантастические путешествия на другие небесные тела описывали также Фрэнсис Годвин, Сирано де Бержерак и другие.

Теоретические основы космонавтики были заложены в работе Исаака Ньютона «Математические начала натуральной философии», опубликованной в 1687 году. Существенный вклад в теорию расчёта движения тел в космическом пространстве внесли также Эйлер и Лагранж.

Романы Жюля Верна «С Земли на Луну» (1865) и «Вокруг Луны» (1869) уже правильно описывают полёт Земля-Луна с точки зрения небесной механики, хотя техническая реализация там явно хромает.

23 марта 1881 года Н. И. Кибальчич, находясь в заключении, выдвинул идею ракетного летательного аппарата с качающейся камерой сгорания для управления вектором тяги. За несколько дней до казни Кибальчич разработал оригинальный проект летательного аппарата, способного совершать космические перелёты. Его просьба о передаче рукописи в Академию наук следственной комиссией удовлетворена не была, проект был впервые опубликован лишь в 1918 году в журнале «Былое», № 4-5.

Российский учёный Константин Циолковский был одним из первых, кто выдвинул идею об использовании ракет для космических полётов. Ракету для межпланетных сообщений он спроектировал в 1903 году. Формула Циолковского, определяющая скорость, которую развивает летательный аппарат под воздействием тяги ракетного двигателя, и сегодня составляет важную часть математического аппарата, используемого при проектировании ракет, в частности, при определении их основных массовых характеристик.

Немецкий ученый Герман Оберт в 1920-е годы также изложил принципы межпланетного полёта.

Американский ученый Роберт Годдард в 1923 году начал разрабатывать жидкостный ракетный двигатель и работающий прототип был создан к концу 1925 года. 16 марта 1926 года он осуществил запуск первой жидкостной ракеты, в качестве топлива для которой использовались бензин и жидкий кислород.

Работы Циолковского, Оберта и Годдарда были продолжены группами энтузиастов ракетной техники в США, СССР и Германии. СССР исследовательские работы вели Группа изучения реактивного движения (Москва) и Газодинамическая лаборатория (Ленинград). 1933 году на их базе был создан Реактивный институт (РНИИ).

В Германии подобные работы вело Немецкое Общество межпланетных сообщений (VfR). 14 марта 1931 член VfR Йоханнес Винклер осуществил первый в Европе удачный запуск жидкостной ракеты. VfR работал и Вернер фон Браун, который с декабря 1932 года начал разработку ракетных двигателей на артиллерийском полигоне германской армии в Куммерсдорфе. После прихода нацистов к власти в Германии были выделены средства на разработку ракетного оружия, и весной 1936 года была одобрена программа строительства ракетного центра в Пенемюнде, техническим директором которого был назначен фон Браун. нём была разработана баллистическая ракета А-4 с дальностью полета 320 км. Во время Второй мировой войны 3 октября 1942 года состоялся первый успешный запуск этой ракеты, а в 1944 году началось её боевое применение под названием V-2. июне 1944 года ракета V-2 стала первым сделанным человеком объектом в космосе, достигнув в суборбитальном полете высоты 176 км.

Военное применение V-2 продемонстрировало огромные возможности ракетной техники, и наиболее мощные послевоенные державы - США и СССР - начали разработку баллистических ракет на основе трофейных германских технологий и с привлечением пленных германских инженеров.

См. также:Второе (космическое) управление и Совет главных конструкторов

Для создания средств доставки ядерного оружия 13 мая 1946 года Совет Министров СССР принял постановление о развёртывании масштабной работы по развитию ракетостроения. соответствии с этим постановлением было создано Второе (космическое) управление и Научно-исследовательский артиллерийский институт реактивного вооружения № 4.

Начальником института был назначен генерал А. И. Нестеренко, его заместителем по специальности «Жидкостные баллистические ракеты» - полковник М. К. Тихонравов, соратник С. П. Королёва по ГИРДу и РНИИ. Михаил Клавдиевич Тихонравов был известен как создатель первой жидкостной ракеты, стартовавшей в Нахабино 17 августа 1933 года. Он же в 1945 году возглавил проект подъёма двух космонавтов на высоту 200 километров с помощью ракеты типа «Фау-2» и управляемой ракетной кабины. Проект был поддержан Академией наук и одобрен Сталиным. Однако в трудные послевоенные годы руководству военной отрасли было не до космических проектов, которые воспринимались как фантастика, мешающая выполнению главной задачи по созданию «дальнобойных ракет».

Исследуя перспективы развития ракет, создаваемых по классической последовательной схеме, М. К. Тихонравов пришёл к выводу об их непригодности для межконтинентальных расстояний. Исследования, проведённые под руководством Тихонравова, показали, что пакетная схема из ракет, созданных в КБ Королёва, обеспечит скорость в четыре раза большую, чем возможная при обычной компоновке. Внедрением «пакетной схемы» группа Тихонравова приблизила выход человека в космическое пространство. инициативном порядке продолжались исследования проблем, связанных с запуском спутников и их возвращением на Землю.

16 сентября 1953 года по заказу ОКБ Королёва в НИИ-4 была открыта первая научно-исследовательская работа по космической тематике «Исследования по вопросу создания первого искусственного спутника Земли». Группа Тихонравова, имевшая солидный задел по этой теме, выполнила её оперативно.

В 1956 году М. К. Тихонравов с частью своих сотрудников переводится из НИИ-4 в ОКБ Королёва начальником отдела по проектированию спутников. При его непосредственном участии создаются первые ИСЗ, пилотируемые корабли, проекты первых автоматических межпланетных и лунных аппаратов.

Ранняя американская ракетно-космическая программа

«Спутниковый кризис», то есть тот факт, что первый искусственный спутник Земли был запущен в СССР, а не в США, привел ко многим инициативам правительства США, направленным на развитие космических исследований:

  • принятие закона о подготовке кадров для национальной обороны в сентябре 1958;
  • создание в феврале 1958 Агентства передовых оборонных исследовательских проектов - DARPA;
  • создание указом президента США Эйзенхауэра от 29 июля 1958 Национального управления по аэронавтике и исследованию космического пространства - NASA;
  • огромное увеличение инвестиций в космические исследования. 1959 Конгресс США выделил на эти цели 134 миллиона долларов, что в четыре раза превышает показатель предыдущего года. К 1968 эта цифра достигла 500 миллионов.

Началась космическая гонка между США и СССР. Первым спутником, запущенным США, стал спутник «Эксплорер-1», запущенный 1 февраля 1958 года командой Вернера фон Брауна (он был завербован для работы в США по программе Операция «Беспросветность» (англ. Operation Overcast), позднее ставшей известной под названием Операция «Скрепка»). Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С (Jupiter-C), первоначально предназначавшаяся для испытания уменьшенных макетов боеголовок.

Этому запуску предшествовала неудачная попытка ВМС США запустить спутник «Авангард-1», широко разрекламированный в связи с программой Международного Геофизического Года. Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника (руководство США хотело, чтобы спутник был запущен военными), поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда».

Первым астронавтом США в космосе стал Алан Шепард, который 5 мая 1961 года совершил суборбитальный полёт на космическом корабле Меркурий-Редстоун-3. Первым из астронавтов США орбитальный полёт совершил Джон Гленн 20 февраля 1962 года на корабле Меркурий-Атлас-6.

Важнейшие этапы освоения космоса с 1957 года

В 1957 году под руководством Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

  • 4 октября 1957 - запущен первый искусственный спутник Земли Спутник-1.
  • 3 ноября 1957 - запущен второй искусственный спутник Земли Спутник-2, впервые выведший в космос живое существо, - собаку Лайку.
  • 4 января 1959 - станция «Луна-1» прошла на расстоянии 6000 километров от поверхности Луны и вышла на гелиоцентрическую орбиту. Она стала первым в мире искусственным спутником Солнца.
  • 14 сентября 1959 - станция «Луна-2» впервые в мире достигла поверхности Луны в районе Моря Ясности вблизи кратеров Аристилл, Архимед и Автолик, доставив вымпел с гербом СССР.
  • 4 октября 1959 - запущена автоматическая межпланетная станция «Луна-3», которая впервые в мире сфотографировала невидимую с Земли сторону Луны. Также во время полёта впервые в мире был на практике осуществлён гравитационный манёвр.
  • 19 августа 1960 - совершён первый в истории орбитальный полёт в космос живых существ с успешным возвращением на Землю. На корабле «Спутник-5» этот полёт совершили собаки Белка и Стрелка.
  • 1 декабря 1960 - совершён первый запуск человеческих клеток в космос – клеток Генриетты Лакс. Зарождение космической клеточной биологии.
  • 12 апреля 1961 - совершён первый полёт человека в космос (Юрий Гагарин) на корабле Восток-1.
  • 12 августа 1962 - совершён первый в мире групповой космический полёт на кораблях Восток-3 и Восток-4. Максимальное сближение кораблей составило около 6.5 км.
  • 16 июня 1963 - совершён первый в мире полёт в космос женщины-космонавта (Валентина Терешкова) на космическом корабле Восток-6.
  • 12 октября 1964 - совершил полёт первый в мире многоместный космический корабль Восход-1.
  • 18 марта 1965 - совершён первый в истории выход человека в открытый космос. Космонавт Алексей Леонов совершил выход в открытый космос из корабля Восход-2.
  • 3 февраля 1966 - АМС Луна-9 совершила первую в мире мягкую посадку на поверхность Луны, были переданы панорамные снимки Луны.
  • 1 марта 1966 - станция «Венера-3» впервые достигла поверхности Венеры, доставив вымпел СССР. Это был первый в мире перелёт космического аппарата с Земли на другую планету.
  • 3 апреля 1966 - станция «Луна-10» стала первым искусственным спутником Луны.
  • 30 октября 1967 - произведена первая стыковка двух беспилотных космических аппаратов «Космос-186» и «Космос-188». (CCСР).
  • 15 сентября 1968 - первое возвращение космического аппарата (Зонд-5) на Землю после облета Луны. На борту находились живые существа:черепахи, плодовые мухи, черви, растения, семена, бактерии.
  • 16 января 1969 - произведена первая стыковка двух пилотируемых космических кораблей Союз-4 и Союз-5.
  • 21 июля 1969 - первая высадка человека на Луну (Н. Армстронг) в рамках лунной экспедиции корабля Аполлон-11, доставившей на Землю, в том числе и первые пробы лунного грунта.
  • 24 сентября 1970 - станция «Луна-16» произвела забор и последующую доставку на Землю (станцией «Луна-16») образцов лунного грунта. Она же - первый беспилотный космический аппарат, доставивший на Землю пробы породы с другого космического тела (то есть, в данном случае, с Луны).
  • 17 ноября 1970 - мягкая посадка и начало работы первого в мире полуавтоматического дистанционно управляемого самоходного аппарата, управляемого с Земли:Луноход-1.
  • 15 декабря 1970 - первая в мире мягкая посадка на поверхность Венеры:«Венера-7».
  • 19 апреля 1971 - запущена первая орбитальная станция Салют-1.
  • 13 ноября 1971 - станция «Маринер-9» стала первым искусственным спутником Марса.
  • 27 ноября 1971 - станция «Марс-2» впервые достигла поверхности Марса.
  • 2 декабря 1971 - первая мягкая посадка АМС на Марс:«Марс-3».
  • 3 марта 1972 - запуск первого аппарата, покинувшего впоследствии пределы Солнечной системы:Пионер-10.
  • 20 октября 1975 - станция «Венера-9» стала первым искусственным спутником Венеры.
  • октябрь 1975 - мягкая посадка двух космических аппаратов «Венера-9» и «Венера-10» и первые в мире фотоснимки поверхности Венеры.
  • 12 апреля 1981 - первый полёт первого многоразового транспортного космического корабля «Колумбия».
  • 20 февраля 1986 - вывод на орбиту базового модуля орбитальной станции Мир
  • 15 ноября 1988 - первый и единственный космический полёт МКС «Буран» в автоматическом режиме.
  • 24 апреля 1990 - запуск телескопа Хаббл на околоземную орбиту.
  • 7 декабря 1995 - станция «Галилео» стала первым искусственным спутником Юпитера.
  • 20 ноября 1998 - запуск первого блока «Заря» Международной космической станции.
  • 24 июня 2000 - станция «NEAR Shoemaker» стала первым искусственным спутником астероида (433 Эрос).
  • 30 июня 2004 - станция «Кассини» стала первым искусственным спутником Сатурна.
  • 15 января 2006 - станция «Стардаст» доставила на землю образцы кометы Вильда 2.
  • 17 марта 2011 - станция «MESSENGER» стала первым искусственным спутником Меркурия.

Современность

Сегодняшний день характеризуется новыми проектами и планами освоения космического пространства. Активно развивается космический туризм. Пилотируемая космонавтика вновь собирается вернуться на Луну и обратила свой взор к другим планетам Солнечной системы (в первую очередь к Марсу).

В 2009 году в мире на космические программы было потрачено $68 млрд, в том числе в США - $48,8 млрд, ЕС - $7,9 млрд, Японии - $3 млрд, России - $2,8 млрд, Китае - $2 млрд.

Программы пилотируемой космонавтики имеют тенденцию к сокращению. С 1972 года прекращены пилотируемые полёты к другим космическим телам, в 2011 году прекращены программы многоразовых космических кораблей, осталась только одна орбитальная станция против двух одновременно поддерживаемых СССР в середине 1980-х годов.

Коммерческое освоение космоса

Существуют три основных направления прикладной космонавтики:

  • Космические информационные комплексы - современные системы связи, метеорология, навигация, системы контроля использования природных ресурсов, охрана окружающей среды.
  • Космические научные системы - научные исследования и натурные эксперименты.
  • Космическая индустриализация - производство фармакологических препаратов, новых материалов для электронной, электротехнической, радиотехнических и других отраслей. перспективе - разработка ресурсов Луны, других планет Солнечной системы и астероидов, удаление в космос отходов вредных промышленных производств.

Военно-космическая деятельность

Основная статья:Военно-космическая деятельность

Космические аппараты используются для спутниковой разведки, дальнего обнаружения баллистических ракет, связи, навигации. Создавались также системы противоспутникового оружия.

Космические агентства

Основная статья:Список космических агентств
  • Бразильское космическое агентство - основано в 1994 году.
  • Европейское космическое агентство (ЕКА) - 1964.
  • Индийская организация космических исследований - 1969.
  • Канадское космическое агентство - 1989.
  • Китайское национальное космическое управление - 1993.
  • Национальное космическое агентство Украины (НКАУ) - 1996.
  • Национальное управление США по аэронавтике и использованию космоса (НАСА) - 1958.
  • Федеральное космическое агентство России (ФКА РФ) - (1990).
  • Японское агентство аэрокосмических исследований (JAXA) - 2003.

Важные космические программы и полёты КА разных стран

Искусственные спутники Земли (ИСЗ)

  • Спутник - серия первых в мире ИСЗ.
    • Спутник-1 - первый аппарат, запущенный человеком в космос.
  • Авангард - серия первых американских спутников. (США)

Спутники СССР и России списком :Электрон // Полёт// Метеор // Экран // Радуга // Горизонт // Молния // Гейзер // Альтаир // Купон // ГЛОНАСС // Парус // Фотон // Око // Стрела // Ресурс // Целина // Бион // Вектор /Ромб // Цикада.

Космические телескопы

  • Астрон - космический ультрафиолетовый телескоп (СССР).
  • Хаббл - космический телескоп-рефлектор. (США).
  • Swift - космическая обсерватория для наблюдения гамма-вспышек (США, Италия, Великобритания).

Автоматические межпланетные станции

  • Пионер - программа исследования Луны, межпланетного пространства, Юпитера и Сатурна. (США)
  • Вояджер - программа исследования планет-гигантов. (США)
  • Маринер - исследования Венеры, Марса и Меркурия. (США)
  • Марс - исследования Марса, первая мягкая посадка на его поверхность. (СССР)
  • Венера - программа исследования атмосферы Венеры и её поверхности. (СССР)
  • Викинг - программа исследования поверхности Марса. (США)
  • Вега - встреча с кометой Галлея, высадка аэрозонда на Венеру. (СССР)
  • Фобос - программа исследований спутников Марса. (СССР)
  • Марс Экспресс - искусственный спутник Марса, высадка марсохода «Бигль-2». (ЕКА)
  • Галилео - исследование Юпитера и его спутников. (НАСА)
  • Гюйгенс - зонд для исследования атмосферы Титана. (ЕКА)
  • Розетта - высадка космического аппарата на ядро кометы Чурюмова-Герасименко (ЕКА).
  • Хаябуса - забор грунта с астероида Итокава (JAXA).
  • MESSENGER - исследование Меркурия (НАСА).
  • Магеллан (КА) - исследование Венеры (НАСА).
  • Новые горизонты - исследование Плутона и его спутников (НАСА).
  • Venus Express- исследование Венеры (ЕКА).
  • Phoenix - программа исследования поверхности Марса (НАСА).

Лунные станции

  • Луна - исследование Луны, доставка лунного грунта, Луноход-1 и Луноход-2. (СССР)
  • Рейнджер - получение телевизионных изображений Луны при падении на её поверхность. (США)
  • Эксплорер 35 (Лунар Эксплорер 2) - изучение Луны и окололунного пространства с селеноцентрической орбиты. (США)
  • Лунар Орбитер - вывод на орбиту вокруг Луны, картографирование лунной поверхности. (США).
  • Сервейер - отработка мягкой посадки на Луну, исследования лунного грунта (США).
  • Lunar Prospector - исследования Луны (США).
  • Смарт-1 - исследования Луны, аппарат оснащён ионным двигателем. (ЕКА).
  • Kaguya - исследования Луны и окололунного пространства (Япония).
  • Чанъэ-1 - исследования Луны, картографирование лунной поверхности (Китай).

Пилотируемые полёты

  • Восток - отработка первых пилотируемых полётов в космос. (СССР, 1961-1963)
  • Меркурий - отработка пилотируемых полётов в космос. (США, 1961-1963)
  • Восход - пилотируемые орбитальные полёты; первый выход в открытый космос, первые многоместные корабли. (СССР, 1964-1965)
  • Джемини - двухместные космические корабли, первые стыковки на околоземной орбите. (США, 1965-1966)
  • Аполлон - пилотируемые полеты на Луну. (США, 1968-1972/1975)
  • Союз - пилотируемые орбитальные полеты. (СССР/Россия, с 1968)
    • Экспериментальный проект Аполлон-Союз (ЭПАС) (англ. Apollo-Soyuz Test Project, ASTP, 1975).
  • Спейс Шаттл - многоразовый космический корабль. (США, 1981-2011)
  • Шэньчжоу - орбитальные пилотируемые полёты. (Китай, с 2003)

Орбитальные станции

  • Салют - первая серия орбитальных станций. (СССР)
  • Скайлэб - орбитальная станция. (США)
  • Мир - первая орбитальная станция модульного типа. (СССР)
  • Международная космическая станция (МКС).
  • Тяньгун-1 (КНР)

Частные космические корабли

  • SpaceShipOne - первый частный космический корабль (суборбитальный).
  • SpaceShipTwo - туристический суборбитальный космический корабль. Дальнейшее развитие SpaceShipOne.
  • Дракон (Dragon SpaceX) - транспортный космический корабль, разрабатывается компанией SpaceX, по заказу НАСА в рамках программы «Коммерческой орбитальной транспортировки» (COTS).

Ракеты-носители

Основная статья:Ракета-носитель См. также:Список ракет-носителей

См. также

  • Космодром
  • Космическая индустрия
  • Список космонавтов и астронавтов
  • Космонавтика России Роскосмос Орбитальная спутниковая группировка России
  • Хронология пилотируемых космических полётов
  • Хронология космических исследований
  • История исследования Солнечной системы
  • Первые в космосе

Примечания

  1. Космонавтика - Астрономический словарь.EdwART (2010). Проверено 29 ноября 2012. Архивировано из первоисточника 1 декабря 2012.
  2. Статья Эдуарда Вилля Георгий Лангемак - отец «Катюши»
  3. 1 2 Первушин А. И. «Красный космос. Звездные корабли Советской империи». М.:«Яуза», «Эксмо», 2007. ISBN 5-699-19622-6
  4. 1 2 П. Я. Черных. «Историко-этимологический словарь современного русского языка», том 1. М.:«Русский язык», 1994. ISBN 5-200-02283-5
  5. Н. И. Кибальчич. Биографическая статья в БСЭ.
  6. Вальтер Дорнбергер:Пенемюде, c. 297 (Peenemuende, Walter Dornberger, Moewig, Berlin 1985. ISBN 3-8118-4341-9) (нем.)
  7. Ракета. Историческая справка
  8. Что составляло примерно 0,14 % (1958) и 0,3 % (1960) от расходов федерального бюджета США
  9. Бессмертные клетки HeLa
  10. Исследование:США затратили на космические программы $48,8 млрд // ИТАР-ТАСС

Литература

  • К. А. Гильзин. Путешествие к далеким мирам. Государственное издательство детской литературы Министерства просвещения РСФСР. Москва, 1956
  • Циолковский К. Э. Труды по космонавтике. М.:Машиностроение, 1967.
  • Штернфельд А. А. Введение в космонавтику. М.; Л.:ОНТИ, 1937. 318 с; Изд. 2-е. М.:Наука, 1974. 240 с.
  • Жаков А. М Основы космонавтики. СПб:Политехника, 2000. 173 с. ISBN 5-7325-0490-7
  • Тарасов Е. В. Космонавтика. М.:Машиностроение, 1977. 216 с.
Энциклопедии по космонавтике
  • Космонавтика. Малая энциклопедия. Гл. редактор В. П. Глушко. М.:Советская энциклопедия, 1970. 527 c.
  • Энциклопедия Космонавтика. Гл. ред. В. П. Глушко. М.:Советская энциклопедия, 1985. 526 c.
  • Всемирная энциклопедия космонавтики. 2-х томах. М.:Военный парад, 2002.
  • интернет-энциклопедия «Космонавтика»

Ссылки

  • ФКА РФ
  • РКК «Энергия» имени С. П. Королёва
  • НПО им. С. А. Лавочкина
  • ГКНПЦ им. М. В. Хруничева
  • Исследовательский центр имени М. В. Келдыша
  • Пилотируемый космос
  • Фотоархив «История отечественной космонавтики»
  • Первые в космосе (огромный фото-, аудио-, видео- архив советской и российской космонавтики)
  • Всероссийский детский и молодёжный центр аэрокосмического образования им. С. П. Королева Мемориального музея космонавтики (ВДМЦ АКО)
  • Из истории развития отечественной космонавтики:исследование космического пространства с помощью автоматических космических станций - научно-популярная лекция, прочитанная Н. Морозовым в ФИАНе в 2007 г.

космонавтика, космонавтика в україні, космонавтика и её связь с другими науками, космонавтика история, космонавтика картинка, космонавтика картинки, космонавтика костюмы и корабли, космонавтика россии, космонавтика-уикипедия

Космонавтика Информацию О

Основные вехи пилотируемой космонавтики

Начало эпохи пилотируемой космонавтики

День 12 апреля 1961 года стал точкой отсчета эпохи пилотируемых космических полетов. За 50 космических лет пилотируемая космонавтика прошла гигантский путь от первого полета Юрия Алексеевича Гагарина, протяженностью всего 108 минут до полетов экипажей на Международной космической станции (МКС), находящейся более 10 лет практически в непрерывном пилотируемом режиме.

В течение 1957— 1961 годов были проведены космические запуски автоматических аппаратов для изучения Земли и околоземного космического пространства, Луны и дальнего космоса. В начале 60-х годов отечественными специалистами под руководством Главного конструктора ОКБ-1 Сергея Павловича Королёва было завершено решение сложнейшей задачи - создание первого в мире пилотируемого космического корабля «Восток».

Выполнение программы «Восток»

В полетах «Востоков» исследовалось воздействие на организм космонавтов перегрузок и невесомости, влияние длительного пребывания в кабине ограниченного объема. Первый «Восток», пилотируемый Юрием Алексеевичем Гагариным, совершил только 1 оборот вокруг Земли. В том же году Герман Степанович Титов провел в космосе целые сутки и доказал, что человек в невесомости может жить и работать. Титов первым из космонавтов сделал фотоснимки Земли, он стал первым космическим фотографом.

Полёт корабля «Восток-5» с космонавтом Валерием Федоровичем Быковским продолжался уже около 5 суток.

На корабле «Восток-6» 16 июня 1963 года полет в космос выполнила первая в мире женщина-космонавт Валентина Владимировна Терешкова.

Первый «выход» человека в открытый космос

«Восход» - первый в мире многоместный пилотируемый космический корабль. Из корабля «Восход-2» 18 марта 1965 года Алексей Архипович Леонов совершил первый в мире выход в открытый космос продолжительностью 12 минут 9 секунд. Теперь внекорабельная деятельность космонавтов стала неотъемлемой частью почти всех космических полетов.


Первая стыковка в космосе двух пилотируемых кораблей

16 января 1969 года - первая стыковка на орбите (в ручном режиме) двух пилотируемых кораблей. Выполнен переход двух космонавтов - Алексея Станиславовича Елисеева и Евгения Васильевича Хрунова через открытый космос из «Союза-5» в «Союз-4».

Первые люди на Луне

Июль 1969 года - полет «Аполлона-11». В ходе полёта 16—24 июля 1969 года люди впервые в истории совершили посадку на поверхность другого небесного тела — Луны. 20 июля 1969 года, в 20:17:39 UTC командир экипажа Нил Армстронг и пилот Эдвин Олдрин посадили лунный модуль корабля в юго-западном районе Моря Спокойствия. Они оставались на поверхности Луны в течение 21 часа 36 минут и 21 секунды. Всё это время пилот командного модуля Майкл Коллинз ожидал их на окололунной орбите. Астронавты совершили один выход на лунную поверхность, который продолжался 2 часа 31 минуту 40 секунд. Первым человеком, ступившим на Луну, стал Нил Армстронг. Это произошло 21 июля, в 02:56:15 UTC. Через 15 минут к нему присоединился Олдрин.

Первая экспедиция на долговременную орбитальную станцию

Новый этап орбитальных полетов начался в июне 1971 года полетом «Союза-11» (Георгий Тимофеевич Добровольский, Виктор Иванович Пацаев, Владислав Николаевич Волков—на фото слева направо) и экспедицией на первую долговременную орбитальную станцию «Салют». На орбите космонавты в течение 22 суток впервые отработали цикл полетных операций, ставших впоследствии типовыми для длительных экспедиций на космических станциях.

Первая международная экспериментальная программа «Аполлон-Союз»

Особое место в пилотируемой космонавтике занимает проходивший с 15 по 25 июля 1975 г. полет в рамках «Экспериментальной программы «Аполлон-Союз». 17 июля в 19 часов 12 минут была совершена стыковка «Союза» и «Аполлона»; 19 июля была проведена расстыковка кораблей, после чего, через два витка «Союза», совершена повторная стыковка кораблей, ещё через два витка корабли окончательно расстыковались. Это был первый опыт проведения совместной космической деятельности представителей разных стран - СССР и США, положивший начало международному сотрудничеству в космосе - проектам «Интеркосмос», «Мир-НАСА», «Мир-Шаттл», МКС.

Многоразовые транспортные космические системы программы «СпейсШаттл» и «Буран»

В начале 70-х годов в обеих «космических державах» - СССР и США - были развернуты работы по созданию многоразовых транспортных космических систем по программам «Спейс шаттл» и «Энергия-Буран».

Многоразовые ТКС располагали возможностями, недоступными для одноразовых ПКА:

  • доставка крупногабаритных объектов (в грузовом отсеке) на орбитальные станции;
  • выведение на орбиту, снятие с орбиты искусственных спутников Земли;
  • техническое обслуживание и ремонт спутников в космосе;
  • инспекция космических объектов на орбите;
  • повторное использование многоразовых элементов транспортной космической системы.

Свой первый и единственный космический полёт «Буран» совершил 15 ноября 1988 года. Космический корабль был запущен с космодрома Байконур при помощи ракеты-носителя «Энергия». Продолжительность полёта составила 205 минут, корабль совершил два витка вокруг Земли, после чего произвёл посадку на аэродроме «Юбилейный» на Байконуре. Полёт прошёл без экипажа в автоматическом режиме с использованием бортового компьютера и бортового программного обеспечения, в отличие от шаттла, который традиционно совершает последнюю стадию посадки на ручном управлении (вход в атмосферу и торможение до скорости звука в обоих случаях полностью компьютеризованы). Данный факт — полёт космического аппарата в космос и спуск его на Землю в автоматическом режиме под управлением бортового компьютера — вошёл в книгу рекордов Гиннеса.

За 30 лет пятью кораблями «Спейс шаттл» было выполнено 133 полета. К марту 2011 года больше всего полётов—39— совершил шаттл «Дискавери». Всего с 1975 по 1991 год было построено шесть шаттлов: «Энтерпрайз» (не летал в космос), «Колумбия» (сгорел при посадке в 2003), «Челленджер» (взорвался во время запуска в 1986), «Дискавери», «Атлантис» и «Индевор».

Орбитальные станции

В период с 1971 по 1997 год, нашей страной было выведено на орбиту восемь пилотируемых космических станций. Эксплуатация первых космических станций по программе «Салют» позволила получить опыт в разработке сложных орбитальных пилотируемых комплексов, обеспечивающих долговременную жизнедеятельность человека в космосе. На борту «Салютов» в общей сложности работали 34 экипажа.

Американским аэрокосмическим агентством была выполнена интересная программа полетов на «Скайлэб», (англ. Skylab, сокращенное от sky laboratory — небесная лаборатория), американская космическая обитаемая орбитальная станция. Выведена на околоземную орбиту 14 мая 1973. На «Скайлэб» работали три экспедиции космонавтов, доставлявшиеся космическими кораблями "Аполлон".

Ч. Конрад, Дж. Кервин, П. Вейц с 25 мая по 22 июня 1973; А. Вин, О. Гэрриот, Дж. Лусма с 28 июля по 26 сентября 1973; Дж. Карр, У. Поуг, Э. Гибсон с 16 ноября 1973 по 8 февраля 1974. Основные задачи всех трёх экспедиций — медико-биологические исследования, направленные на изучение процесса адаптации человека к условиям длительного космического полёта и последующей реадаптации к земному тяготению; наблюдения Солнца; изучение природных ресурсов Земли, технические эксперименты.

Орбитальный комплекс (ОК) «Мир» стал международным многоцелевым комплексом, на котором была осуществлена практическая отработка целевого применения будущих пилотируемых космических комплексов, выполнена обширная программа научных исследований. На борту ОК «Мир» работало 28 основных экспедиций, 9 экспедиций посещения, выполнено 79 выходов в открытый космос и проведено более 23000 сеансов научных исследований и экспериментов. На «Мире» работали 71 человек из 12 стран. Выполнено 27 международных научных программ. Космонавтом Валерием Поляковым в 1994-1995 годах был выполнен полет, равный по длительности полету на Марс и обратно. Он продолжался 438 суток. В течение 15-летнего полёта комплекса был приобретён опыт устранения нештатных ситуаций различной значимости и отклонений от нормы, возникавших по различным причинам.

Международная космическая станция

Международная космическая станция - это проект, в котором участвуют шестнадцать стран. Она вобрала в себя опыт и технологии всех предшествующих ей программ развития пилотируемой космонавтики. Вклад России в создание и обеспечение эксплуатации МКС весьма значителен. К началу работ на МКС в 1993 году Россия уже имела 25-летний опыт эксплуатации орбитальных станций и соответственно развитую наземную инфраструктуру. В настоящий момент на борту МКС работает 59 основная экспедиция. Подготовлены и выполнили полет 18 экспедиций посещения на МКС.

Название орбитальной станции

Период полета, годы

Количество экспедиций

Налет, сутки

Основных

Посещения

Салют-1

Салют-2

1973 - 1979

Салют-3

1974 - 1975

Салют-4

1974 - 1977

Салют-5

1976 - 1977

Салют-6

1977 - 1982

Салют-7

1982 - 1991

1986 - 2001

В соответствии с «Долгосрочной программой научно-прикладных исследований и экспериментов, планируемых на российском сегменте МКС» на борту станции выполняются космические эксперименты. Они сгруппированы в тематические разделы по десяти направлениям научно-технических исследований. Программа дает представление о целях, задачах и ожидаемых результатах исследований и является основанием для разработки планов ее реализации в зависимости от имеющихся ресурсов и готовности аппаратуры и документации. Космические исследования расширяют и углубляют знания о нашей планете, окружающем мире, закладывают основы для решения фундаментальных научных и социально-экономических проблем. Объем проводимых исследований на РС МКС неуклонно растёт..

Планируется дооснащение станции российским многоцелевым лабораторным модулем (МЛМ), позволяющим существенно увеличить российскую программу научных исследований за счет доставки на МКС целого комплекса новой научной аппаратуры. Кроме того, вместе с МЛМ планируется доставка европейского манипулятора ERA для обеспечения внекорабельной деятельности экипажей МКС. В дальнейшем предполагается доставить на РС МКС узловой модуль и два научно-энергетических модуля.

Космический туризм

В ряде стран уже разворачивается целая индустрия по обеспечению полетов в космос обычных граждан, не имеющих профессиональной квалификации космонавта. Частный космос может не только приносить прибыль владельцам соответствующих средств, но, как и традиционный, государственный ведет к созданию новых технологий, а, значит, к расширению возможностей общества.

К полету на РС МКС прошли подготовку 20 космических туристов, 10 из них совершили космический полет:

Область профессиональной деятельности, профессия

Выполнено полётов, период, продолжительность

Тито Денис

1 полет

7 суток 22 часа 4 минуты 8 секунд.

Шаттлворт Марк

1 полет

9 суток 21 час 25 минут 05 секунд.

Олсен Грегори

1 полет

9 суток 21 час 14 минут 07 секунд.

Костенко Сергей

Понтес Маркос

Бразилия

Летчик-испытатель

1 полет

9 суток 21 час 17 минут 04 секунды.

Ансари Анюше

1 полет

10 суток 21 час 04 минуты 37 секунд.

Эномото Дайсукэ

Симони Чарльз

2 полета

13 суток 18 часов 59 минут 50 секунд;

12 суток 19 часов 25 минут 52 секунды.

Шейх Музафар

Малайзия

Врач-ортопед

1 полет

10 суток 21 час 13 минут 21 секунда.

Фаиз бин-Халид

Малайзия

Военврач, стоматолог

Полонский Сергей

Лэнс Басс

Музыкант

Гарвер Лори

Йи Сойон (Ли Со Ён)

Республика Корея

Наука, биотехнология

1 полет

10 суток 21 час 13 минут 05 секунд.

Республика Корея

Ричард Гэрриотт

1 полет

11 суток 20 часов 35 минут 37 секунд.

Ник Халик

Австралия

Ги Лалибирте

Бизнес, артист

1 полет

10 сут 21 ч 16 мин 55 секунд

Эстер Дайсон

Барбара Бэрретт

Заправлены в планшеты
Космические карты,
И штурман уточняет
В последний раз маршрут...

Владимир Войнович (1957)

В начале 2016 года о том, нужна ли человечеству пилотируемая космонавтика, дискутируют научный журналист, модератор Клуба научных журналистов Александр Сергеев и астроном, ст. науч. сотр. ГАИШ МГУ Владимир Сурдин.

Александр Сергеев :

Нередко звучит мнение , что пилотируемая космонавтика не нужна , что это «всегда была политическая фаллометрия между сверхдержавами» и все задачи космических исследований могут выполнить роботы. Хотя в определенных аспектах это суждение не лишено оснований, в общем случае оно является ошибочным.

Естественно, политическая конкуренция была основным двигателем пилотируемой космонавтики. Как результат эти технологии были созданы исторически несколько преждевременно, из-за чего оказались связаны с чрезмерными рисками и затратами. Думаю, реально востребованными они станут еще через полвека. Но раз уж технологии созданы, желательно их сохранять и совершенствовать, а не забрасывать, чтобы потом воссоздавать с нуля. В этом смысл неспешной деятельности вокруг МКС.

Единственной ключевой проблемой в освоении человеком космоса остается высокая стоимость вывода грузов на орбиту. Из-за этого слишком дорого создавать вне Земли полноценную технологическую инфраструктуру. А без нее очень высокими оказываются риски, что, в свою очередь, увеличивает затраты. Получается порочный круг. Если тем или иным способом удастся существенно удешевить доставку, развитие космонавтики резко ускорится.

Принципиально это возможно. По формуле Циолковского для разгона 1 кг до первой космической скорости с помощью химических двигателей нужно всего около 20 кг топлива, то есть порядка 10 долл. Реальная стоимость доставки груза на МКС - около 30 тыс. долл. за килограмм.

Накрутка на 3,5 порядка (!) связана с традиционными технологическими решениями и организационными процессами, а также с вынужденно завышенными требованиями к безопасности (из-за невозможности оказания технической помощи в полете). Почти наверняка эту стоимость можно снизить в десятки раз за счет масштабирования космической деятельности, создания технологической инфраструктуры на орбите и реализации оригинальных идей, вроде запусков с высотных платформ или электромагнитных катапульт.

Что же касается необходимости пилотируемой космонавтики, то задачи, которые в обозримом будущем неосуществимы для автоматов, в космосе есть. Несколько лет назад я читал на эту тему американский отчет. Главной из таких задач там называлось геологическое бурение на поверхности других небесных тел. Речь шла не о скромных экспериментах, как на «Луне-24» или на «Кьюриосити», а о полноценном разведывательном бурении на десятки и сотни метров.

Также предлагаю сравнить скорость передвижения по поверхности:

  • Лунный ровер «Аполлона-17» - 36 км за 3 дня - 12 км / сутки.
  • «Луноход-2» - 42 км за 4 месяца - 350 м / сутки.
  • «Оппортьюнити» - 42 км за 11,5 лет - 10 м / сутки.

Как сделать космическую базу рентабельной?

Есть мнение, что даже при снижении стоимости выведения на орбиту на порядок и росте орбитального трафика на два порядка пилотируемая космонавтика не найдет коммерческого оправдания. Я полагаю, что это не совсем так. Уже сейчас есть направления, которые находятся на грани рентабельности, а если стоимость выведения снизится на порядок-полтора, то работающие бизнес-идеи просто непременно появятся.

Сейчас на МКС живет шесть человек. Если принять рост орбитального трафика в сто раз, то космическое население должно вырасти даже больше, поскольку будет значительная экономия ресурсов за счет масштабирования и синергии. Итак, на орбите работает около тысячи человек. Чем они могут там заниматься?

Более или менее понятно, что не астрономическими наблюдениями, поскольку для этого даже на земных обсерваториях присутствие человека обычно не требуется.

Уникальное торговое предложение космической базы включает длительную невесомость, высокий вакуум, впечатляющий вид Земли из космоса, возможность сборки и обслуживания космических аппаратов без сведения их с орбиты. Возможно, я что-то упустил, но эти пункты очевидны.

Прежде всего, там создается отель. Даже сейчас, когда туристический билет на МКС стоит более 20 млн долл., туда стоит очередь желающих. И на жалкий суборбитальный прыжок за 200 тыс. - тоже. Думаю, что многие захотят за пару миллионов провести отпуск в орбитальном отеле на огромной космической станции с населением в сотни человек, перепробовать там кучу аттракционов (от спортивных игр в невесомости до выхода в открытый космос), познакомиться с работой различных коммерческих, технологических и научных команд.

Далее строится киностудия для съемок в невесомости. Понятно, что и сейчас в Голливуде умудряются создать впечатление невесомости в различных космических фильмах. Но для таких эффектов есть много ограничений, а сопутствующая компьютерная поддержка стоит дорого. Когда бюджеты фильмов исчисляются сотнями миллионов, может оказаться вполне оправданным за 20 млн отправить на орбиту съемочную команду с актерами.

Не забываем о рекламном потенциале «города на орбите». Компании будут платить за размещение своих логотипов на станции, поставку на нее своих продуктов, съемку там своих рекламных роликов, отправку победителей промо-лотерей. Наверняка появятся и новые неожиданные идеи вроде недавнего предложения устраивать по заказу искусственные метеорные дожди над городами, сбрасывая с орбиты специальные капсулы.

Ремонтный док в космосе

Следующее естественное направление - ремонтный док для спутников. Сейчас большинство спутников строится в расчете на полную автономию. Это заставляет делать все системы сверхнадежными, а значит, дорогими. Ошибки выведения, как правило, делают спутники бесполезными. Страховки покрывают стоимость аппаратов, но не упущенную выгоду. Наконец, многие спутники за время эксплуатации устаревают морально.

Пример телескопа «Хаббл» показывает, что обслуживание спутника может значительно продлить его активную жизнь. Буксир с ионным двигателем может приводить в док для обслуживания спутники, выведенные на нерасчетные орбиты, вышедшие из строя, нуждающиеся в модернизации или дозаправке. Кстати, работа многих комических обсерваторий ограничена запасами жидкого гелия на борту. В доке их можно было бы пополнять.

Развитием идеи ремонтного дока будет строительная верфь для крупных спутников и космических кораблей. Сейчас сложность исследовательских спутников и межпланетных станций ограничивается грузоподъемностью и габаритами ракет-носителей. А также тем, что космический аппарат должен безупречно работать сразу после стрессовых условий ракетного старта.

При снижении стоимости выведения и наличии орбитальной сборочной верфи многие ограничения на конструкцию крупных космических аппаратов были бы сняты. Также перестали бы быть столь проблематичными вопросы пилотируемых полетов к другим планетам. В частности, удалось бы снять самую трудную проблему радиационной безопасности экипажа, поскольку масса радиационной защиты больше не была бы сдерживающим фактором.

Исследовательская база в космосе

Следующий шаг - создание космической базы для систематического сбора, доставки и изучения образцов с различных тел Солнечной системы. Нет необходимости при полете за каждым таким образцом сначала выбираться из гравитационно-атмосферного колодца Земли, а потом возвращаться в него. Зонды с ионными двигателями могут стартовать прямо с космической станции и возвращаться на нее. На ней же может проводиться весь цикл исследований, за исключением самых экзотических.

Что касается исследований, то, полагаю, основной упор должен быть сделан на медицину и биологию в условиях нулевой или пониженной гравитации. Также не исключено появление новых материалов, которые оправданно производить в условиях невесомости.

Космический город

И наконец, не будем забывать, что человеческие поселения существуют не только для того, чтобы что-то куда-то поставлять. В них еще просто живут люди, которые занимаются самыми разными делами. Вполне естественно, что по мере роста космической базы часть людей станет просто ее жителями. Вероятно, поначалу жить там будет дорого и это смогут позволить себе лишь очень состоятельные люди. Но ведь их кто-то должен будет обслуживать. И цены этого обслуживания будут учитывать «орбитальную наценку». Так что все эти люди сформируют свой рынок.

Наконец, пойдут исследования по оптимизации жизни на самой орбитальной станции. Скажем, может оказаться, что снабжать станцию кислородом выгоднее не с Земли, а с Луны - в составе реголита. И из него же можно добывать алюминий для собственных конструкционных нужд.

Короче, если численность населения станет достаточно большой, на станции не сразу, но постепенно запустится своя экономика, и проект начнет сам искать себе заработок - туризм, реклама, эксклюзивные апартаменты, обслуживание космической техники, эксперименты, съемки и развлечения в невесомости и в открытом космическом пространстве. В общем, нормальная человеческая жизнь. Только для ее запуска нужно, чтобы стоимость выведения на орбиту снизилась на порядок, а лучше на два. А вот что нужно для этого, пока еще до конца не ясно.

Необходимо менять стратегию

Владимир Сурдин :

Рождение пилотируемой космонавтики в 1960-е было естественным этапом технического прогресса. В нем были заинтересованы все - инженеры, врачи, идеологи. Появление человека на околоземной орбите и далее на Луне сильно изменило мировоззрение просвещенной части землян, стимулировало прогресс науки.

Но в последние десятилетия в пилотируемой космонавтике застой. Ее развитие практически остановилось в середине 1980-х. Стало ясно, что на околоземной орбите человеку опасно оставаться более года, а вдали от Земли - более полугода. Что все оборонные и хозяйственные задачи (мониторинг Земли, связь, навигация и проч.) эффективнее решаются беспилотными аппаратами. Человек в космосе остается элементом государственного престижа, но с годами эффективность и этой его роли снижается.

Сейчас космонавты присутствуют только на МКС и в основном занимаются поддержанием работоспособности станции. Надежды на разработку новых технологий в невесомости (идеальные кристаллы, чистые лекарства), очевидно, не оправдываются. Научные эксперименты на МКС проводятся. Но если не принимать во внимание меркантильные соображения (т. е. финансирование), то ученые не горят желанием размещать свои приборы на МКС, предпочитая непилотируемые аппараты. Отправляя научную установку на МКС, ее всё равно приходится делать максимально автоматизированной и снабжать дополнительными устройствами, нейтрализующими вредное влияние (вибрацию и т. п.) космонавтов и систем их жизнеобеспечения.

Насколько я знаю, пилотируемая космонавтика съедает более трети бюджета гражданских космических агентств, не принося сколько-нибудь значительных научных и технических результатов, в отличие от беспилотных орбитальных аппаратов и межпланетных зондов.

Тем не менее по закону Паркинсона штат любого ведомства со временем только возрастает. Чиновники от пилотируемой космонавтики декларируют для нее новые амбициозные цели (полеты к астероидам, к Марсу), не делая в этом направлении реальных шагов. Даже моделируя на Земле длительные полеты (например, «Марс–500»), они не создают условий, по возможности близких к космическим, - я имею в виду радиацию.

Разумеется, было бы недальновидно на основании сказанного запретить пилотируемые полеты и в результате потерять наработанные технологии. Но менять стратегию необходимо. Технологии пребывания человека в космосе уже используются частными фирмами, развивающими космический туризм, поэтому они не пропадут. А государственные деньги желательно тратить на решение фундаментальных задач.

Предыдущее поколение людей вошло в историю цивилизации первыми шагами в космос. А чем ответит нынешнее поколение? Если переориентировать приоритеты большой космонавтики на создание новых межпланетных зондов и космических телескопов, то наше поколение могло бы стать первым обнаружившим жизнь вне Земли. По-моему, это достойная задача, решив которую мы откроем новые перспективы для человечества.

Александр Сергеев :

Я полностью согласен, что при неизменности технологий выведения на орбиту обозначенная Владимиром Георгиевичем смена стратегии оправданна и даже необходима. Однако мне была интересна ситуация, когда стоимость выведения удастся радикально снизить. В этом случае можно обеспечить в космосе защиту от радиации (это лишь вопрос массы экранов), избавить экипажи от постоянного воздействия невесомости (за счет закрутки больших станций) и значительно снизить психологические издержки (за счет увеличения численности экипажей и уровня безопасности полетов). Таким образом, радикальной космической экспансии препятствует лишь высокая стоимость вывода на орбиту. Технически осуществимые альтернативы ракетным технологиям уже придуманы. Тому, кто реализует их на практике, будет принадлежать космос. А до тех пор, да, только роботы и космонавты престижа.

Изучив этот параграф, мы:

  • вспомним ученых, внесших значительный вклад в освоение космоса;
  • узнаем, как можно изменять орбиту космических кораблей;
  • убедимся, что космонавтика широко используется на Земле.

Зарождение космонавтики

Космонавтика изучает движение искусственных спутников Земли (ИСЗ), космических кораблей и межпланетных станций в космическом пространстве. Существует различие между природными телами и искусственными космическими аппаратами: последние при помощи реактивных двигателей могут изменять параметры своей орбиты.

Значительный вклад в создание научных основ космонавтики, пилотируемых космических кораблей и автоматических межпланетных станций (АМС) внесли советские ученые.

Рис. 5.1. К. Э. Циолковский (1857-1935)

К. Э. Циолковский (рис. 5.1) создал теорию реактивного движения. В 1902 г. он впервые доказал, что только при помощи реактивного двигателя можно достичь первой космической скорости.

Рис. 5.2. Ю. В. Кондратюк (1898-1942)

Ю. В. Кондратюк (А. Г. Шаргей; рис. 5.2) в 1918 г. рассчитал траекторию полета на Луну, которая впоследствии была применена в США при подготовке космических экспедиций «Аполлон». Выдающийся конструктор первых в мире космических кораблей и межпланетных станций С. П. Королев (1906-1966) родился и учился в Украине. Под его руководством 4 октября 1957 г. в Советском Союзе был запущен первый в мире ИСЗ, созданы АМС, которые первыми в истории космонавтики достигли Луны, Венеры и Марса. Наибольшим достижением космонавтики в то время был первый пилотируемый полет космического корабля «Восток», на котором 12 апреля 1961 г. летчик-космонавт Ю. А. Гагарин совершил кругосветное космическое путешествие.

Круговая скорость

Рассмотрим орбиту спутника, который обращается по круговой орбите на высоте Н над поверхностью Земли (рис. 5.3).

Рис. 5.3. Круговая скорость определяет движение тела вокруг Земли на постоянной высоте Н над ее поверхностью

Для того чтобы орбита была постоянной и не изменяла свои параметры, должны выполняться два условия.

  1. Вектор скорости должен быть направлен по касательной к орбите.
  2. Величина линейной скорости спутника должна равняться круговой скорости, которая определяется уравнением:

(5.1)

где - Мзем = 6×10 24 кг - масса Земли; G = 6,67×10 -11 (H м 2)/кг 2 - постоянная всемирного тяготения; Н - высота спутника над поверхностью Земли, Rзем = 6,37 10 9 м - радиус Земли. Из формулы (5.1) следует, что самое большое значение круговая скорость имеет при высоте Н = 0, то есть в том случае, когда спутник движется у самой поверхности Земли. Такая скорость в космонавтике называется первой космической:

В реальных условиях ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью, ибо плотная атмосфера очень тормозит движение тел, которые перемещаются с большой скоростью. Если бы даже скорость ракеты в атмосфере достигла величины первой космической, то большое сопротивление воздуха разогрело бы ее поверхность до температуры плавления. Поэтому ракеты во время старта с поверхности Земли сначала поднимаются вертикально вверх до высоты нескольких сотен километров, где сопротивление воздуха незначительно, и только тогда спутнику сообщается соответствующая скорость в горизонтальном направлении.

Для любознательных

Невесомость во время полета в космическом корабле наступает в момент, когда прекращают работу ракетные двигатели. Для того чтобы ощутить состояние невесомости, не обязательно лететь в космос. Любой прыжок в высоту, или длину, когда исчезает опора под ногами, дает нам кратковременное ощущение состояния невесомости.

Движение космических аппаратов по эллиптическим орбитам

Если величина скорости спутника будет отличаться от круговой или вектор скорости не будет параллелен плоскости горизонта, тогда космический аппарат (КА) будет обращаться вокруг Земли по эллиптической траектории. Согласно первому закону, в одном из фокусов эллипса должен находиться центр Земли, поэтому плоскость орбиты спутника должна пересекать плоскость экватора или совпадать с ней (рис. 5.4). В этом случае высота спутника над поверхностью Земли изменяется в пределах от перигея до апогея. ствующим точкам на орбитах планет - перигелия и афелия (см. § 4).

Рис. 5.4. Движение спутника по эллиптической траектории похоже на обращение планет в зоне тяготения Солнца. Изменение скорости определяется законом сохранения энергии: сумма кинетической и потенциальной энергии тела при движении по орбите остается постоянной

Если спутник движется по эллиптической траектории, то, согласно второму закону Кеплера, изменяется его скорость: наибольшую скорость спутник имеет в перигее, а наименьшую - в апогее.

Период обращения космического аппарата

Если космический аппарат движется по эллипсу вокруг Земли с переменной скоростью, его период обращения можно определить с помощью третьего закона Кеплера (см. § 4):

где Тс - период обращения спутника вокруг Земли; Т м = 27,3 суток - сидерический период обращения Луны вокруг Земли; а с - большая полуось орбиты спутника; =380000 км большая полуось орбиты Луны. Из уравнения (5.3) определим:

(5.4)

Рис. 5.5. Геостационарный спутник обращается на высоте 35600 км только по круговой орбите в плоскости экватора с периодом 24 ч (N - Северный полюс)

В космонавтике особую роль играют ИСЗ, которые «висят» над одной точкой Земли - это геостационарные спутники, использующиеся для космической связи (рис. 5.5).

Для любознательных

Для обеспечения глобальной связи достаточно вывести на геостационарную орбиту три спутника, которые должны «висеть» в вершинах правильного треугольника. Сейчас на таких орбитах находятся уже несколько десятков коммерческих спутников разных стран, обеспечивая ретрансляцию телевизионных программ, мобильную телефонную связь, компьютерную сеть Интернет.

Вторая и третья космические скорости

Эти скорости определяют условия соответственно для межпланетных и межзвездных перелетов. Если сравнить вторую космическую скорость V 2 с первой V 1 (5.2), то получим соотношение:

Космический корабль, стартующий с поверхности Земли со второй космической скоростью и движущийся по параболической траектории, мог бы полететь к звездам, потому что парабола является незамкнутой кривой и уходит в бесконечность. Но в реальных условиях такой корабль не покинет Солнечную систему, ибо любое тело, которое вышло за пределы земного тяготения, попадает в гравитационное поле Солнца. То есть космический корабль станет спутником Солнца и будет обращаться в Солнечной системе подобно планетам или астероидам.

Для полета за пределы Солнечной системы космическому кораблю нужно сообщить третью космическую скорость V 3 =16,7 км/с. К сожалению, мощность современных реактивных двигателей еще недостаточна для полета к звездам при старте непосредственно с поверхности Земли. Но если КА пролетает через гравитационное поле другой планеты, он может получить дополнительную энергию, которая позволяет в наше время совершать межзвездные полеты. В США уже запустили несколько таких АМС («Пионер-10,11» и «Вояджер-1,2»), которые в гравитационном поле планет-гигантов увеличили свою скорость настолько, что в будущем вылетят за пределы Солнечной системы.

Для любознательных

Полет на Луну происходит в гравитационном поле Земли, поэтому КА летит по эллипсу, в фокусе которого находится центр Земли. Самая выгодная траектория полета с минимальным расходом топлива - это эллипс, являющийся касательным к орбите Луны.

Во время межпланетных полетов, например на Марс, КА летит по эллипсу, в фокусе которого находится Солнце. Самая выгодная траектория с наименьшей затратой энергии проходит по эллипсу, который является касательным к орбите Земли и Марса. Точки старта и прилета лежат на одной прямой по разные стороны от Солнца. Такой полет в одну сторону длится более 8 месяцев. Космонавтам, которые в недалеком будущем посетят Марс, надо учесть, что сразу же вернуться на Землю они не смогут: Земля по орбите движется быстрее, чем Марс, и через 8 месяцев его опередит. До возвращения космонавтам нужно находиться на Марсе еще 8 месяцев, пока Земля займет выгодное положение. То есть общая продолжительность экспедиции на Марс будет не менее двух лет.

Практическое применение космонавтики

В наше время космонавтика служит не только для изучения Вселенной, но и приносит большую практическую пользу людям на Земле. Искусственные космические аппараты изучают погоду, исследуют космос, помогают решать экологические проблемы, ведут поиски полезных ископаемых, обеспечивают радионавигацию (рис. 5.6, 5.7). Но наибольшие заслуги космонавтики в развитии космических средств связи, космического мобильного телефона, телевидения и Интернета.

Рис. 5.6. Международная космическая станция

Ученые проектируют строительство космических солнечных электростанций, которые будут передавать энергию на Землю. В недалеком будущем кто-нибудь из нынешних учеников полетит на Марс, будет осваивать Луну и астероиды. Нас ждут загадочные чужие миры и встреча с другими формами жизни, а возможно, и с внеземными цивилизациями.

Рис. 5.7. Космическая станция в виде гигантского кольца, идею которой предложил Циолковский. Вращение станции вокруг оси создаст искусственное притяжение

Рис. 5.8. Старт украинской ракеты «Зенит» с космодрома в Тихом океане

Выводы

Космонавтика как наука о полетах в межпланетное пространство бурно развивается и занимает особое место в методах изучения небесных тел и космической среды. Кроме того в наше время космонавтика успешно применяется в средствах связи (телефон, радио, телевидение, Интернет), в навигации, геологии, метеорологии и многих других областях деятельности человека.

Тесты

  1. С первой космической скоростью может лететь космический корабль, обращающийся вокруг Земли по круговой орбите на такой высоте над поверхностью:
      А. О км.
      Б. 100 км.
      В. 200 км.
      Г. 1000 км.
      Д. 10000 км.
  2. Ракета стартует с поверхности Земли со второй космической скоростью. Куда она долетит?
      А. До Луны.
      Б. До Солнца.
      В. Станет спутником Солнца.
      Г. Станет спутником Марса.
      Д. Полетит к звездам.
  3. Космический корабль обращается вокруг Земли по эллиптической орбите. Как называется точка орбиты, в которой космонавты находятся ближе всего к Земле?
      А. Перигей.
      Б. Перигелий.
      В. Апогей.
      Г. Афелий.
      Д. Парсек.
  4. Ракета с космическим кораблем стартует с космодрома. Когда космонавты почувствуют невесомость?
      А. На высоте 100 м.
      Б. На высоте 100 км.
      В. Когда выключится реактивный двигатель.
      Г. Когда ракета попадет в безвоздушное пространство.
  5. Какие из этих физических законов не выполняются в невесомости?
      А. Закон Гука.
      Б. Закон Кулона.
      В. Закон всемирного тяготения.
      Г. Закон Бойля-Мариотта.
      Д. Закон Архимеда.
  6. Почему ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью?
  7. Чем отличается перигей от перигелия?
  8. Почему при запуске космического корабля возникают перегрузки?
  9. Выполняется ли в невесомости закон Архимеда?
  10. Космический корабль обращается вокруг Земли по круговой орбите на высоте 200 км. Определите линейную скорость корабля.
  11. Может ли космический корабль сделать за сутки 24 оборота вокруг Земли?

Диспуты на предложенные темы

  1. Что вы можете предложить для будущих космических программ?

Задания для наблюдений

  1. Вечером найдите на небе спутник или международную космическую станцию, которые освещаются Солнцем и с поверхности Земли выглядят, как яркие точки. Нарисуйте их путь среди созвездий в течение 10 минут. Чем отличается полет спутника от движения планет?

Ключевые понятия и термины:

Апогей, геостационарный спутник, вторая космическая скорость, круговая скорость, межпланетная космическая станция, перигей, первая космическая скорость, искусственный спутник Земли.